Druckverlustberechnung einer geraden, kreisförmigen Rohrleitung

Druckverlustberechnung für verschiedene Medien.

Wird ein Medium ausgewählt, wird die Dichte und Viskosität in Abhängigkeit von der Temperatur vom Programm ermittelt.

Bei Selektion von "Eingabewerte" ist die Dichte und Viskosität selbst einzugeben.

Bei Abgas wird die Dichte bei einem Druck von 101300 Pa zugrunde gelegt. Der Einfluss der Expansionsströmung bei kompressiblen Medien wird nicht berücksichtigt.

Eingabewerte:

k d_i

Einheit für Volumenstrom

Volumenstrom - V

Mediumauswahl

Mediumtemperatur - t (°C)

Frostschutzmittelanteil - fs (% Vol.)

Rohr Innendurchmesser - d_i (mm)

Rohr Rauigkeit - k - (mm)

Rohr Länge - L (m)

m³/h	
0,7	∆
Wasser-Fr	ostschul
0,1	A
	₩
20	A
	₩
26	A
20	₹
0,007	A
0,007	₩
150	A
130	₩

Berechnung

Ergebnisse:

Volumenstrom - V (m³/s)	0.000194
Rohr Querschnitt - A (m²)	0.000531
Strömungsgeschwindigkeit Medium - v (m/s)	0.366
Dichte - ρ (kg/m³)	1032.0
Kinematische Viskosität - v (m²/s)	0.00000346
Reynoldzahl - R _e (-)	2749.0
Strömungsform	turbulent
Rohrreibungszahl - λ (-)	0.0449

1 von 2 16.01.2016 12:07

Widerstandswert - R (kg/m ⁷)		474624151401.3
Zetawert - ζ (-)		259.3
Druckverlust - Δp	(Pa) (mbar) (bar)	17944.9 179.4 0.179

Weitere Links: Formel - Druckverlustberechnung Allgemeine Stoffdaten

2 von 2 16.01.2016 12:07